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Shear viscosity of molecular liquids is formulated and calculated with use of a time-dependent density-
functional theory. Allowing for nonrigidity of each molecule, we obtain shear-induced distortion of both
intramolecular and intermolecular correlations self-consistently, which makes it possible to calculate the shear
viscosity. As a by-product we derive and solve a hypernetted-chain closure for equilibrium correlations in
deformable molecular liquids.@S1063-651X~96!09007-1#
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I. INTRODUCTION

The density-functional theory~DFT! of nonuniform fluids
plays an important role in classical many-body theory@1#.
The theory has been employed in quantitative studies on
liquid-solid transformations@2#, interfacial and nucleation
phenomena, and nonperiodic crystals, among others@2–4#.
The versatile and successful use of the DFT may be ascribed
to its significant computational simplicity and physical clar-
ity.

Motivated by the general applicability and usefulness of
the DFT, one of us developed a time-dependent DFT, which
could shed some light on dynamic aspects of the various
processes mentioned above@5#. As an application of the dy-
namic version of the DFT, we recently studied the shear
viscosity of simple liquids by calculating the shear-induced
distortion of two-body correlations@6#, which may be repre-
sented by the radial distribution functiong(r ) in the case of
an equilibrium situation. By comparing our results with the
nonequilibrium molecular dynamics by Ashurst and Hoover
@7#, we concluded that at least in the equilibrium~e.g., non-
supercooled! liquid state, our theory reproduces both distor-
tion and shear viscosity fairly well@6#.

In this paper we consider the viscosity of molecular liq-
uids based on the time-dependent DFT@5# and the general
density-functional formulation of molecular liquids by Chan-
dler, McCoy, and Singer@8# with the molecular liquid itself
described within the framework of the interaction site model
~ISM! @9#. Since we are interested not only in the distortion
of the intermolecular correlations but also in the shear-
induced deformation of a molecule itself, we consider liquids
composed of nonrigid molecules. This in turn compels us to
treat inter- and intramolecular correlations in a self-
consistent way. Although our main concern is centered
around a nonequilibrium~under shear! situation, we must
first consider the equilibrium~without shear! situation, since
we need the equilibrium correlations as input data in our
theory @6#, and for the purpose we propose and solve an
alternative hypernetted-chain~HNC! closure.

The remainder of this paper is outlined as follows. In Sec.
II we present some definitions of various correlation func-
tions within the framework of the ISM@9#. We study equi-
librium correlations based on the DFT with the aid of an idea
due to Percus@10# ~which is called the Percus trick! and
derive a set of integral equations. Section III deals with a
shear flow based on the time-dependent DFT and the shear
viscosity is expressed in terms of the distortion of the inter-
molecular correlations. In Sec. IV we give our numerical
results and Sec. V contains some remarks and a summary.

II. EQUILIBRIUM STRUCTURES OF
MOLECULAR LIQUIDS

In this section we consider equilibrium structures of mo-
lecular liquids based on the ISM@9# and the DFT@1,8#.

A. Correlation functions

To be concrete we consider a one-component molecular
liquid and employ the standard notation of the ISM@8,9#.
The density of the sitea at positionr is defined to be

na~r ![(
i51

N

d~r2r i ,a!, ~1!

whereN is the total number of the molecules andr i ,a de-
notes the position of the sitea of the i th molecule. We in-
troduce the equilibrium intra- and intermolecular correlations
vab~r ,r 8! andhab~r ,r 8!, respectively, by

xab~r ,r 8![Š@na~r !2^na~r !&#@nb~r !2^nb~r !&#‹

5nvab~r ,r 8!1n2hab~r ,r 8!, ~2!

wheren5N/V, with V the volume of the system. The in-
tramolecular correlationvab~r ,r 8! gives the probability den-
sity of finding a siteb of a molecule atr 8 when a sitea of
the same molecule is atr , thus satisfying the condition

vaa~r ,r 8!5d~r2r 8!, E dr 8vab~r ,r 8!51. ~3!*Author to whom correspondence should be addressed.
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The Ornstein-Zernike~OZ! relation for monatomic liquids is
generalized within the ISM as

v215I2nc~0!, x215~nv!212c ~4!

or, more explicitly,

(
g
E dr 8@dagd~r2r 8!2ncag

~0!~r ,r 8!#vgb~r 8,r 9!

5dabd~r2r 9!, ~5!

hab~r ,r-!5(
gd

E dr 8E dr 9vag~r ,r 8!cgd~r 8,r 9!

3@vdb~r 9,r-!1nhdb~r 9,r-!#. ~6!

We will call Eqs. ~4!–~6! the ISM OZ relations. It is noted
that for liquids every two-body correlation, say,hab~r ,r 8!,
depends on onlyur2r 8u. Thus, hereafter we will use a con-
volution notation* , with which Eq.~6! is expressed as

hab5(
g,d

vag* cgd* @vdb1nhdb#. ~68!

B. Free-energy density-functional for molecular liquids

We assume that each molecule consists ofS sites and to
our system, as described in the preceding subsection, we add
one molecule (i50), which is the same as other molecules
and will be called the blue molecule. To apply the Percus
trick @10#, which is expressed by Eqs.~13! and ~14! below,
we suppose that the sitea0 of the blue molecule is held fixed
at the origin of our coordinate system.

We now consider the free-energy functional
F[n~r !,n(0)~r !#, with n(0)~r ! denoting the microscopic den-
sity of the blue molecule, of our system, which is expressed
as the sum of three contributions

F5FN1F01F int ~7!

whereFN(F0) is the free energy of the system composed of
N molecules~the blue molecule! andF int denotes the inter-
action between the blue molecule and the surrounding mol-
ecules. With the aid of the DFT for polyatomic liquids by
Chandler McCoy, and Singer@8#, and corresponding to our
previous choice of the free-energy density-functional theory
for simple liquids@6#, we take, asFN ,

FN /~kBT!5(
a

E dr na~r !@ lnna~r !La
321#

2 1
2(

a,g
E drE dr 8dna~r !c̄ag~r ,r 8!dng~r 8!,

~8!

where c̄ag~r ,r 8!5cag~r ,r 8!1c ag
(0)~r ,r 8!, dna~r !5na~r !2n,

andLa is the thermal wavelength for the site speciesa. As
noted in@8~a!#, FN @Eq. ~8!# produces the extended reference
interaction site model~RISM! theory @11# for equilibrium
two-body correlations.2kBTcag~r ,r 8! and 2kBTcag

(0)~r ,r 8!
represent the effective inter- and intramolecular interaction

between the sitea and the siteg, respectively. In writing
down F0 andF int we note that the sitea0 of the blue mol-
ecule interacts with another sitea of the blue~or the sur-
rounding! molecule through the true site-site potential
faa0
a (r ) @or faa0

e (r )#. From this it follows that

F0 /~kBT!5 (
a ~Þa0!

E dr na
~0!~r !@ lnna

~0!~r !La
321#

2 1
2 (

a ~Þa0!,g ~Þa0!
E drE dr 8na

~0!~r !cag
~0!

3~r ,r 8!ng
~0!~r 8!

1 (
a ~Þa0!

E dr @fa0a
a ~r !/~kBT!#na

~0!~r !, ~9!

F int /kBT52 (
a ~Þa0!,g

E drE dr 8na
~0!~r !cag~r ,r 8!ng~r 8!

1(
g
E dr @fa0g

e ~r !/~kBT!#ng~r !, ~10!

wheren a
(0)~r ! ~aÞa0! denotes the density of the sitea of the

blue molecule.

C. Closure equation for equilibrium correlations

Equilibrium density fieldsna,eq~r ! for all a and na,eq
~0! ~r !

~aÞa0! are determined as the solution to the variational
equations

dF/dna~r !5ma , ~11!

dF/dna
~0!~r !5ma

~0! ~aÞa0!. ~12!

The Percus trick@10# links the two-body equilibrium corre-
lations, saygaa0

(r ), to the one-body distributionna,eq(r ) in
the presence of a particle~of speciesa0! fixed at the origin.
From this we have

ngaa0
~r ![nhaa0

115na,eq~r !, ~13!

vaa0
~r !5na,eq

~0! ~r !, ~14!

where we note that the equilibrium densitiesna,eq~r ! and
na,eq

~0! ~r ! ~aÞa0! depend on onlyr from the isotropy of the
system around a fixed sitea0. The chemical potentialsma
and ma

~0! are determined from the boundary conditions
ga,eq(r )→1 as r→` and the normalization, the second
equation of~3!. From Eqs.~11!–~14! we have

lngaa0
~r !5(

g
c̄ag* nhga0

1cag*vga0
@12dga0

#

2bfaa0
e ~r !, ~15!

lnvaa0
~r !5(

g
cag* nhga0

1cag
~0!
*vga0

@12dga0
#

2bfaa0
a ~r !1C, ~16!
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where the constantC is determined from the normalization
Eq. ~3!.

If cab andc ab
(0) are regarded as known functions, Eqs.~15!

and ~16! are solved forgab5hab11 and vab . Inserting
these results into the ISM OZ relation, we obtain a closed
equation for the direct correlation matricesc and c(0). We
give here some comments on our closure~15! and~16!. With
use of the ISM OZ relation, it is not difficult to derive from
Eq. ~15! the HNC equation@12#

gab[11hab5exp@2bfab
e 1hab2cab#. ~17!

Equation~16!, which represents a different closure, can be
interpreted as follows. The right-hand side of Eq.~16! di-
vided by2b, which denotes the effective potential on the
site a of the blue molecule, consists of the intramolecular
contribution 2b(gcag

(0)
*vga0

@12dga0
#1faa0

a (r ) and the

intermolecular one2b(gcag* nhga0
. The former is con-

cerned with binding and the thermal expansion of each mol-
ecule and the latter with packing or solvent effects. The in-
teresting interplay of these two contributions in high-density
liquids is planned to be discussed elsewhere@13#, where we
will investigate isomerization phenomena.

III. TIME-DEPENDENT DFT AND SHEAR VISCOSITY

In this section we consider a stationary shear flow and
calculate the stationary density profilesna,st~r ! and na,st

~0! ~r !
around an arbitrary sitea0, which is considered to be at an
origin in our ~moving! coordinate system, of the arbitrarily
chosen blue molecule. If there were no shear flow,na,st~r !
and na,st

~0! ~r ! would be just the equilibrium density profiles
na,eq~r ! and na,eq

~0! ~r ! studied in the preceding section. As
stated in@6#, the stationary shear flow distorts the equilib-
rium density profiles and produces a shear stress in which we
are interested@14,7#.

The velocity fieldu~r !5gyex is characterized by the rate
of straing andex denotes the unit vector in thex direction.
Following the general prescription@5#, we write down the
nonlinear diffusion equation forna~r ,t! and n a

(0)~r ,t!
~aÞa~0!! as

]na~r ,t !/]t5“•@$Da,bna~r ,t !“dF/dna~r ,t !%

2na~r ,t !u~r !#

52“•Ja~r ,t !, ~18!

]na
~0!~r ,t !/]t5“•@$Da,bna

~0!~r ,t !“dF/dna
~0!~r ,t !%

2na
~0!~r ,t !u~r !#

52“•Ja
~0!~r ,t !, ~19!

where the free energyF is given by Eq.~7! andDa,b is the
bare diffusion constant of the sitea. Here we have assumed
that the bare diffusion constants for inter- and intramolecular
diffusion are the same and will omit the subscriptb hereafter
for the sake of notational simplicity. The fluxesJa~r ,t! and
Ja

~0!~r ,t! are given explicitly after some algebra as

Ja~r ,t !52Da“na1Dana“S (
g

c̄ag* ng

1 (
g ~Þa0!

cag* ng
~0!2bfaa0

e D 1nau, ~20!

Ja
~0!~r ,t !52Da“na

~0!1Dana
~0!
“S (

g ~Þa0!
cag

~0!
* ng

~0!

1(
g

cag* ng2bfaa0
a D 1na

~0!u, ~21!

where the last terms on the right-hand sides of Eqs.~20! and
~21! represent the fluxes due to the shear flow.

We consider first the case of no shear flowg50. The
stationary state is nothing but an equilibrium one and the
condition of no fluxesJa5Ja

~0!50 is equivalent to the varia-
tional equations~11! and~12!, whose solutions are given by
na,eq~r ! andna,eq

~0! ~r ! @see Eqs.~13! and ~14!#.
We turn now to the distortions produced by the shear

flow. Assuming that the rate of straing is small, let us ex-
press the stationary density profiles as

na,st~r !5ngaa0
~r !@11gpa~r !/Da1o~g!#, ~22!

na,st
~0! ~r !5vaa0

~r !@11gqa~r !/Da1o~g!#, ~23!

wherepa~r ! and qa~r ! denote the distortions of inter- and
intramolecular correlations, respectively, ando(g)/g→0 as
g→0. From“•J5“•J~0!50 we obtain, after straightforward
but tedious calculations, the following integro-differential
equations forpa andqa :

“•@gaa0
“pa#2“•Fgaa0

“S (
g

c̄ag* ngga0
pg

1 (
g ~Þa0!

cag*vga0
qgD G5yex•“gaa0

, ~24!

“•@vaa0
“qa#2“•Fvaa0

“S (
g

cag* ngga0
pg

1 (
g ~Þa0!

cag
~0!
*vga0

qgD G5yex•“vaa0
~aÞa0!.

~25!

Here we comment on our notation. In order to avoid exces-
sive subscripts we have writtenna,st~r ! or pa~r ! in Eq. ~22!
instead of more precise expressionsna,st~r ua0! or pa~r ua0!.
The latter makes us aware of the situation that the site of
speciesa0 of the blue molecule is held fixed at the origin of
the ~moving! coordinate. We will keep the notation in Eqs.
~22! and~23! for a while, but in our expression for the shear
viscosity @Eq. ~34!# we employ the latter notation to avoid
confusion.

From the special form of the inhomogeneous terms on the
right-hand side of Eqs.~24! and~25!, we readily see that the
distortionspa~r ! andqa~r ! can be expressed as

pa~r !5xyaa~r !, qa~r !5xyba~r !, ~26!
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with aa and ba depending on only the magnitude ofr ,r .
Following procedures similar to those described in@6#, we
can transform Eqs.~24! and ~25! to

~r 2aa!91~2/r1gaa0
8 /gaa0

!@r 2aa#826aa

2S (
g

~Da /Dg!nP@Aag#1~gaa0
8 /gaa0

!~P@Āag#!8

1 (
g ~Þa0!

~Da /Dg!P@Bag#1~gaa0
8 /gaa0

!~P@B̄ag#!8D
5ggaa0

8 /gaa0
, ~27!

~r 2ba!91~2/r1vaa0
8 /vaa0

!@r 2ba#8

26baS (
g

~Da /Dg!nP@Fag#1~vaa0
8 /vaa0

!

3~P@ F̄ag#!81 (
g ~Þa0!

~Da /Dg!P@Eag#

1~vaa0
8 /vaa0

!~P@Ēag#!8D 5gvaa0
8 /vaa0

, ~28!

wheref 8 denotes differentiation with respect to the argument
of f ~here r ! and P[ f ][2 f 91 f 8/r . We define the
functions A, B, C, and D in Eqs. ~27! and ~28!, each
with two greek suffices, by specifying their Fourier
transformations. The Fourier transformation ofAag ,
F[Aag][*dr Aag exp~ik•r !, is given by

F@Aag#5F@ c̄ag#$~F@aggga0
# !82k~21!~F@aggga0

# !8%.
~29!

F[Bag] is given by replacing aagga0
and c̄ag in

Eq. ~29! by bgvga0
and cag , respectively. F[Eag]

[F[c ag
(0)]F[Bag]/F[cag], F[Fag][F[cag]F[Aag]/

F[ c̄ag], and F[ Āag][2F[Aag]/k
2 and the same relation

holds betweenB̄ andB, Ē andE, andF̄ andF.
Finally in this section we express the shear viscosityh in

terms of the distortionaa(r ) or, more precisely,aa(r ua0).
For the purpose we consider the momentum conservation
equation

dp~k!/dt5 ik•s~k!, ~30!

wherep~k!5(a( jpj ,a exp~ik•r j ,a!, with pj ,a denoting mo-
mentum of a sitea of the j th molecule. Thexy component
of the stress tensorsxy~k! becomes2hgV in the limit of
k→0. With use of the equation of motion

dpi ,a /dt52 (
j ~Þ i !

(
b

@r ia, jbfab
e8 ~r ia, jb!/r ia, jb#

2 (
bÞa

@r ia, jbfab
a8 ~r ia, jb!/r ia, jb#, ~31!

it is readily derived that

sxy~k→0!52 1
2 S (

i ,a
(

j ~Þ i !,b
xia, jbyia, jbfab

~e!8

3~r ia, jb!/r ia, jb

1 (
bÞa

xia, jbyia, jbfab
~a!8~r ia, jb!/r ia, jbD

1(
i ,a

~pi ,a,xpi ,a /ma!. ~32!

Here we neglect the kinetic contribution, the last term, be-
cause its contribution is very small at the liquid density
@15,7# and note that in the limitV→` the intramolecular
contribution vanishes. Thus, if we take the average
^sxy(k→0)& in the stationary shear flow, we can express it
in terms of distortion as

^sxy~k→0!&52~N/2! (
b,a0

E dr ~xy/r !fba0
e8 ~r !nb~r ua0!.

~33!

Since this is equal to2hgV, it follows from Eqs.~22! and
~26! that

h5~n2/2! (
a,a0

E dr ~xy!2gaa0
~r !faa0

e8 ~r !aa~r ua0!/~Dar !.

~34!

We note that this expression forh is similar to Eq.~15! in
@6#.

Before proceeding to numerical calculations, we remark
that the nonlinear diffusion equations~18! and ~19! govern
the time evolution of the density fields on an atomic scale. If
we introduced slowly varying order parameters such as the
amplitudes of the density waves in liquid-solid interfaces, we
could derive Cahn-Hilliard-like equations for the order pa-
rameters with square gradient terms in the effective free en-
ergy @2,16#.

IV. NUMERICAL RESULTS

Model for a diatomic homonuclear liquid

In Sec. III we formulated the shear viscosity for a general
one-component molecular liquid. Now we specify our sys-
tem further to be composed of two-site (S52) homonuclear
molecules. To be concrete, let us take liquid nitrogen, for
which the interatomic potentialf ab

e (r )5fe(r ) ~a,b51,2!
was chosen within the rigid-molecule model to be a Lennard-
Jones potential

fe~r !54«@~s/r !122~s/r !6#, ~35!

with s53.341A and «50.6075310214 erg @17,11~b!#. We
introduce here nonrigidity by choosing a Morse potential for
the intramolecular interaction

fa~r !5Ue@12exp$2a~r2r e!%#2, ~36!

with Ue51.5865310211 erg,a52.443 A21, andr e51.1 A
@18#.
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From the symmetry inherent in our model system, there
are five unknown quantities for the static correlations intro-
duced in Sec. II, that is,g115g225g12[g, c115c225c12[c,
v12[v, c 11

(0)5c 22
(0), and c 12

(0). The generalized HNC equa-
tions ~17! and ~16! take the form

g511h5exp@2bfe1h2c#, ~37!

lnv52nc* h1c11
~0!
*v2bfa1C. ~38!

The ISM OZ relations~5! and ~6! are reduced, respectively,
to

c11
~0!52c12

~0!
*v, v5n@c12

~0!1c11
~0!
*v#, ~39!

h5c12v* c1v* c*v12n@c* h1v* c* h#. ~40!

Thus the set of equations~37!–~40! forms the closed equa-
tions for the five unknowns.

The thermodynamic state of liquid N2 we are mainly in-
terested in is represented byT572.2 K andn50.0186 A23

@11~b!#. Since our main concern in this paper is nonequilib-
rium effects associated with the shear flow, here we only
summarize equilibrium properties obtained from our coupled
HNC equations, discussing them in detail separately in the
future @13#. In Fig. 1 the equilibrium correlationv(r ) is
shown for several temperatures. We immediately observe
that v(r ) becomes broad due to thermal motion asT in-
creases. Also it turns out that the average bond length
^d&[*dr rv(r ) becomes large asT increases due to the
asymmetry of the Morse potential around its minimum at
r5r e . As for the density dependence ofv(r ) we only note
that^d& decreases asn increases withT kept constant, which
may be called a packing effect. The intermolecular correla-
tion g(r ) is modified only slightly compared to the rigid
molecular model, maximally aroundr'4 A by 1024, which
gives rise to a slight change in the internal energy and the
equation of state.

Asserting these qualitative arguments, we now proceed to
distortions produced by the shear flow. We plot in Fig. 2~a!

the intramolecular distortionb(r )v(r ) @see Eqs.~26! and
~23!# and in Fig. 2~b! the stationary distributionnst

~0!~r ! on the
z50 plane withg chosen to be rather large in order to make
the distortion discernible. Figure 2~a! shows that the distor-
tion extends a little asymmetrically around the equilibrium
intramolecular pointr e51.1 A only by 0.2 A. From Fig. 2~b!
the favorable orientation of molecules is seen to be on the
line y52x. This tendency is similar to the one observed in
the intermolecular situation@see Fig. 3~b!#. Figures 3~a! and
3~b! show the intermolecular distortiona(r )g(r ) @see Eqs.
~22! and ~26!# and the stationary distributionnst~r !/n on the
z50 plane, respectively. By comparing Fig. 3~a! with Fig. 2
in @6#, which depict the same quantity for different systems
~with different scales!, we notice that the distortions in both
systems look rather similar as a whole. However, for liquid
N2, in contrast with simple liquids@6#, we have no positive
bump around the position corresponding to the second peak
of g(r ). As a result, the second peak of the two-body inter-
molecular correlation is not distorted much by the shear flow
@Fig. 3~b!# compared to the case of atomic or simple liquids
@6#. We remark that shear stress in the Couette flow is pro-
duced by the distortiong(r )a(r ) together with the~mainly
repulsive! intermolecular interaction Eq.~34!. From our re-
sults that the density is high~low! on y52x (y5x) line
under the condition that a~blue! particle is fixed at the ori-
gin, we notice that the blue particle experiences shear force
in the positive-x direction as it should in the flow field
u~r !5gyex .

FIG. 1. Equilibrium correlationv(r ) in units of A23 for some
temperatures withr in units of A for n50.0186 A23.

FIG. 2. ~a! Intramolecular distortionb(r )v(r ) in units of A23

with r in units of A. For r>1.2 A and r<1 A, we note that
b(r )v(r ).0. ~b! Stationary distributionnst

~0!~r ! on thez50 plane
in units of A23 with x andy in units of A. The black rim shows the
planenst

~0!50. We note thatnst
~0!.0 for r>1.2 A andr<1 A with

r 25x21y2.
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The shear viscosity is calculated from Eq.~34!, which
takes the following form for the homonuclearS52 system
with all the irrelevant subscripts omitted:

h5~2n2!E dr ~xy!2g~r !fe8~r !a~r !/Dr , ~41!

To calculate the shear viscosity based on Eq.~41! we must
estimate the bare diffusion constantD[kBT/mG, where 1/G
denotes the relaxation time of each atom~site! in momentum
space. For monatomic liquids, 1/G was estimated to be
1/G5a l /v th , wherel is the interparticle distance andv th the

thermal velocity. We chosea to be 1
16 for a soft-core system

in order to get good overall agreement with molecular-
dynamics results at typical liquid densities@6#. For liquid N2
let us set the momentum relaxation time tentatively equal to
1/G5at, with t the intramolecular vibration periodt52p/V.
The frequencyV is estimated based on the model intramo-
lecular potential~36! to be (4a2Ue/m)

1/2.531014. For the
thermodynamic state mentioned above, we calculate pressure
to be p5443106 Pa from our radial distribution function.
The viscosity for the thermodynamic state is about
34031026 Pa s, which is obtained from our theory by setting
a equal to 1

100 @19#. If packing or other intermolecular effects
tend to maket smaller, the factora becomes larger. For the
rigid model of N2, h is obtained to be only slightly larger
~less than 1%! than for the nonrigid model, with the samea
being used for the calculation. Finally, we comment that
from our calculationh decreases as we decrease density,
with temperature kept constant. In this process pressure de-
creases. From experiments@19# we know thath decreases as
pressure decreases in accord with our results. From the above
it seems thath of diatomic liquids can be calculated semi-
quantitatively based on the time-dependent DFT of simple
liquids @6#.

V. REMARKS

In this paper we formulated the shear viscosity of molecu-
lar liquids by extending a time-dependent DFT so that it
could be applied to polyatomic liquids. The calculated vis-
cosity, together with equilibrium and nonequilibrium corre-
lations, seems to reproduce experimental results rather well.
By allowing for an intramolecular distortion we show quan-
titatively that a molecule itself is distorted just like intermo-
lecular correlations. It would be interesting if one could ob-
serve such distortion experimentally. Our final remark is
concerned with the free-energy functional Eq.~7!, which is
proposed based on the assumption that an atom~site! fixed at
some position interacts with other sites via a bare intersite
potential, while the other sites interact each other via an ef-
fective interactionc or c(0). Although this is consistent with
the so-called extended RISM functional idea, we need some
theoretical justification for this proposal. We plan to discuss
this point together with an application of Eq.~7! to some
isomerization problems in the future.
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