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Shear-induced distortion of intramolecular and intermolecular correlations in liquids:
Time-dependent density-functional theory
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Shear viscosity of molecular liquids is formulated and calculated with use of a time-dependent density-
functional theory. Allowing for nonrigidity of each molecule, we obtain shear-induced distortion of both
intramolecular and intermolecular correlations self-consistently, which makes it possible to calculate the shear
viscosity. As a by-product we derive and solve a hypernetted-chain closure for equilibrium correlations in
deformable molecular liquid$S1063-651X96)09007-]

PACS numbes): 61.25.Em

[. INTRODUCTION The remainder of this paper is outlined as follows. In Sec.
Il we present some definitions of various correlation func-
The density-functional theor§DFT) of nonuniform fluids ~ tions within the framework of the ISNI9]. We study equi-
plays an important role in classical many-body thefity.  librium correlations based on the DFT with the aid of an idea
The theory has been employed in quantitative studies oflue to Percug10] (which is called the Percus trigkand
liquid-solid transformationg2], interfacial and nucleation derive a set of integral equations. Section Ill deals with a
phenomena, and nonperiodic crystals, among otf@]. shear floyv based on the time-dependept DFT and the_ shear
The versatile and successful use of the DFT may be ascribedScosity is expressed in terms of the distortion of the inter-
to its significant computational simplicity and physical clar- Molecular correlations. In Sec. IV we give our numerical
ity. results and Sec. V contains some remarks and a summary.
Motivated by the general applicability and usefulness of
the DFT, one of us developed a time-dependent DFT, which
could shed some light on dynamic aspects of the various
processes mentioned abdE. As an application of the dy- . . . o
namic version of the DFT, we recently studied the shear In th|§ section we consider equilibrium structures of mo-
viscosity of simple liquids by calculating the shear-induced!ecular liquids based on the ISi®] and the DFT1,8].
distortion of two-body correlation], which may be repre-
sented by the radial distribution functi@qr) in the case of A. Correlation functions

an equi_lipri_um situation. By comparing our results with the 14 pe concrete we consider a one-component molecular
nonequilibrium molecular dynamics by Ashurst and Hooveriquid and employ the standard notation of the I$819].
[7], we concluded that at least in the equilibrieng., non-  The density of the siter at positionr is defined to be
supercooledliquid state, our theory reproduces both distor-
tion and shear viscosity fairly welb]. N

In this paper we consider the viscosity of molecular lig- ”a(f)Eizl O(r=riq), (1)
uids based on the time-dependent Dfsl and the general -
density-functional formulation of molecular liquids by Chan-
dler, McCoy, and Sing€l8] with the molecular liquid itself
described within the framework of the interaction site mode
(ISM) [9]. Since we are interested not only in the distortion
of the intermolecular correlations but also in the shear®
induced deformation of a molecule itself, we consider liquids
composed of nonrigid molecules. This in turn compels us to ~ Xag(rr")={[No(r) =(Na(r))I[Ng(r) —{(ng(r))1)
treat inter- and intramolecular correlations in a self- _ , 2 ,
consistent way. Although our main concern is centered =Nwap(r, 1)+ nhap(rr), @)
around a nonequilibriumunder shear situation, we must ) )
first consider the equilibriunwithout shear situation, since Wheren=N/V, with V the voI,umg of the system. The in-
we need the equilibrium correlations as input data in ouff@molecular correlatiom,(r,r’) gives the probability den-

theory [6], and for the purpose we propose and solve arply Of finding a siteg of a molecule at’ when a sitex of
alternative hypernetted-chaiNC) closure. the same molecule is at thus satisfying the condition

II. EQUILIBRIUM STRUCTURES OF
MOLECULAR LIQUIDS

whereN is the total number of the molecules and, de-
jnotes the position of the site of the ith molecule. We in-
troduce the equilibrium intra- and intermolecular correlations
«p(1,r") andh,4(r,r'), respectively, by

* Author to whom correspondence should be addressed. Daall,17)=(r=r"), f dr'wag(rr’)=1. ©)
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The Ornstein-Zernik€OZ) relation for monatomic liquids is between the sitex and the sitey, respectively. In writing

generalized within the ISM as down F, andF,,; we note that the sitey, of the blue mol-
~ o . . ecule interacts with another siie of the blue(or the sur-
=1-nc?, x'=(nw) '-c (4 rounding molecule through the true site-site potential

or, more explicitly, qﬁwo(r) [or ¢M (r)]. From this it follows that

Fol/(kgT)= fdrn(‘”rlnn(o)rAsl
E Jdr [80yd(r—1")=nCO(r,r") ] w,ar',r") o/(ksT) ., #ao (nl (r) ]
= 8,50(r=1"), (5) -3 [ arn@ocd)
(Fag),y (Faq
hap(r,r")=2, jdr'Jdr”way(r,r')cy{s(r’,r”) x(r,rHn'd(r’)
Yo
X[@sa(r",r")+nhgg(r”,r")]. (6) (;& fdr[daa a(r)/(kBT)]n (r) 9
(23 010
We will call Egs.(4)—(6) the ISM OZ relations. It is noted
that for liquids every two-body correlation, saly,s(r.r’), Fi/kaT=— Jer' dr’ n O(r)c, . (r,r')n(r')
depends on onlyr —r’|. Thus, hereafter we will use a con- " a #ao) y @ i
volution notation*, with which Eq.(6) is expressed as
+2 fdrszy(r)/(kBT)]ny(r), (10
Y

Nup=2, @ay* Cyo¥[@ast M), G
7 wheren O)(r) (a# ap) denotes the density of the siteof the
) ) o blue molecule.
B. Free-energy density-functional for molecular liquids
We assume that each molecule consistS$ aites and to C. Closure equation for equilibrium correlations
our system, as described in the preceding subsection, we add
one molecule i(=0), which is the same as other molecules
and will be called the blue molecule. To apply the Percus
trick [10], which is expressed by Eqél3) and (14) below,

Equilibrium density fieldsn, ¢ {r) for all & and n{,r)
(a#ay) are determined as the solution to the variational
equatlons

we suppose that the sitg of the blue molecule is held fixed SEIon (1) =, (11)
at the origin of our coordinate system.
We now consider the free-energy functional SFINO(N=u® (a#ay). (12)

FIn(r),n®(r)], with n©©(r) denoting the microscopic den-
sity of the blue molecule, of our system, which is expressed'he Percus trick10] links the two-body equilibrium corre-
as the sum of three contributions lations, sayg,(r), to the one-body distribution, {r) in
_ ‘ the presence of a particlef speciesa) fixed at the origin.
F=Fn+FotFin D Erom this we have
whereF(F,) is the free energy of the system composed of

N molecules(the blue moleculeand F;,, denotes the inter- NGaag(1)=NNgay t1=Nged 1), (13
action between the blue molecule and the surrounding mol- ©
ecules. With the aid of the DFT for polyatomic liquids by a1 =Ngedl), (14

Chandler McCoy, and Singé€8], and corresponding to our
previous choice of the free-energy density-functional theory'Nhere we note that the equilibrium densitiag(r) and
for simple liquids[6], we take, asy, aeq(f) (a#ap) depend on only from the isotropy of the
system around a fixed site,. The chemical potentialg.,
3 and ©'9 are determined from the boundary conditions
FN/(kBT):g fdr Na(r)INng(r)Ag—1] Uuedl)—1 asr—e and the normalization, the second
equation of(3). From Eqgs.(11)—(14) we have

-1y drfdr’5na(r)c_w(r,r’)5ny(r’),
a,y
(8)

where C,,(r,r')=c,(rr)+cr,r’), on,(r)=n,r)—n,
and A, is the thermal wavelength for the site speciesAs
noted in[8(a)], Fy [EQ. (8)] produces the extended reference Wy ()= E C oo * +C(O)*w WI1-68,, ]
interaction site mode(RISM) theory [11] for equilibrium 0 7 7o 7o
two-body correlations—kgTc,,(r,r’) and —kgTc'(rr’) _BgR (r)+C 16
represent the effective inter- and intramolecular interaction aag '

Ingaao(r): E C_a'y* nh'ya0+cay yao[l 5'}’010]
Y

~Bba,(1), (15
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where the constant is determined from the normalization _

Eqg. (3) Ja(r!t):_Davna+DanaV(E Cay*ny
If c,p andc 'Y are regarded as known functions, EG5) 4

and (16) are solved forg,z=h,z+1 and w,s. Inserting 0

these results into the ISM OZ relation, we obtain a closed + 2 Cay*n(y)—ﬁ¢iao

equation for the direct correlation matricesand c(®). We 7 (Fao)

give here some comments on our clos(ir® and(16). With

use of the ISM OZ relation, it is not difficult to derive from \]<a°>(r,t)= — DaVn(ao>+ Danf)V( 2 C<a°y>* n(y0>

Eq. (15) the HNC equatiorj12] y (#ag)

+ny,u, (20

+nQuy, (21

Gap=1tNp=exd — St hos—Cogl.  (17) +27 Cay* Ny = B,

Equation(16), which represents a different closure, can bewhere the last terms on the right-hand sides of E2@). and
interpreted as follows. The right-hand side of E{6) di- (21) represent the fluxes due to the shear flow.

vided by — B, which denotes the effective potential on the We consider first the case of no shear flgwe0. The
site @ of the blue molecule, consists of the intramolecularstationary state is nothing but an equilibrium one and the
contribution — B ¢\ @, [1 8,4 ]+ ¢2,, (1) and the  condition of no fluxes),=J,’=0 is equivalent to the varia-

Y ay . . . .
intermolecular one— 83 .c,.*nh., . The former is con- tional equationg11) and(12), whose solutions are given by
B23Cay* NNya Naedl) andn'r) [see Egs(13) and (14)].

cerned with binding and the thermal expansion of each mol- We turn now to the distortions produced by the shear

ecule and the latter with packing or solvent effects. The in-fIOW Assuming that the rate of straipis small, let us ex-
teresting interplay of these two contributions in high-densitypres's the stationary density profiles as ’

liquids is planned to be discussed elsewHhdr@, where we
will investigate isomerization phenomena. Ny (1) =NGua (N[1+ P, (1)/D,+0(y)] (22)
o, aao [e3 o il

IIl. TIME-DEPENDENT DFT AND SHEAR VISCOSITY NI = 0 aq (N[1+¥0o(1)/D+0(y)],  (23)

In this section we consider a stationary Sheaf(g}ow anQyherep,(r) and q,(r) denote the distortions of inter- and
calculate the stationary density profilegs(r) andnes{r)  jnramolecular correlations, respectively, amgy)/y—0 as
around an arbitrary siteg, which is considered to be at an y—0. FromV-J=V-J9=0 we obtain, after straightforward

origin in our (moving coordinate system, of the arbitrarily 1t tedious calculations, the following integro-differential
chosen blue molecule. If there were no shear floyg(r) equations fop,, andq,,:

and n%(r) would be just the equilibrium density profiles
Naedr) and n'(r) studied in the preceding section. As o
stated in[6], the stationary shear flow distorts the equilib- V[9aa,¥Y Da]—V'[gaaOV(E Cay*NGya Py
rium density profiles and produces a shear stress in which we 7

are interested14,7].
The velocity fieldu(r)=yye, is characterized by the rate + > Cay*wyaoqy”:yex'v%ao. (24)
of strainy ande, denotes the unit vector in thedirection. v (Fao)
Following the general prescriptiofb], we write down the
nonlinear diffusion equation forn,(r,t) and n®(rt) Viw,,Vaq]-V-|e V( > ¢,.*Ng,, p
(0[7&[1(0)) as aag a aag S ay yaglty
NG (r,0)/at=V-[{D, pny(r,t)V8F/8n,(r,1)} + (Z ) cgoy)*wyaoqyﬂ=yex-wao (a# ayp).
Y (Fag
_na(rat)u(r)] (25)
V-durb), (18 Here we comment on our notation. In order to avoid exces-
sive subscripts we have writtam, 4(r) or p,(r) in Eq. (22)
an'Q(r,t)/gt=V-[{D, ,n'O(r,t)VsF/6nO(r 1)} instead of more precise expressiamg(r|ag) or p,(r|ay).
) The latter makes us aware of the situation that the site of
—ng (r,Hu(r)] speciesa, of the blue molecule is held fixed at the origin of
= V. 30,1, (19) the (moving) coordinate. We will keep the notation in Egs.

(22) and(23) for a while, but in our expression for the shear

viscosity [Eqg. (34)] we employ the latter notation to avoid
where the free energy is given by Eq.(7) andD, ,, is the  confusion.

bare diffusion constant of the site Here we have assumed From the special form of the inhomogeneous terms on the
that the bare diffusion constants for inter- and intramoleculafight-hand side of Eqg24) and(25), we readily see that the
diffusion are the same and will omit the subsciitereafter  distortionsp,(r) andq,(r) can be expressed as

for the sake of notational simplicity. The fluxdg(r,t) and

JO(r t) are given explicitly after some algebra as PL(r)=xya,(r), q.(r)=xyb,r), (26)
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with a, and b, depending on only the magnitude of .
Following procedures similar to those described 6, we
can transform Eqg24) and(25) to

(rzaa)"+ (2/r + g(’xaolgaao)[rzaa], - Gaa

[ 2 (OulDINPLAGI+ (8 Gaag) (PLAG'

+ 2 (Du/D)PBo]+(Qlhar/Gaa) (PBay))’

Y (9&&0)
= Y0/ Gay 27)

(120,)" + (2 + @ | ® 4 [120,]’

—6b,| 2 (Du/DYNPIF 4]+ (00 )/ @aa,)
Y

X(P[Fg,])'+ 2 (D,/D,)PlE,,]
v (Fagp)

+ (0] Oaag) (PLEay]) | = Y0 o Oauyr  (28)

wheref’ denotes differentiation with respect to the argument

of f (here r) and P[f]=—f"+f'/r. We define the
functions A, B, C, and D in Egs. (27) and (28), each
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X(Tig,ip)Tiaip

+L; Xia,j,Byia,jﬂ(ﬁ(a?’(ria,jﬂ)/ria,jﬁ
+i2 (pi,a,xpi,a/ma)- (32)

Here we neglect the kinetic contribution, the last term, be-
cause its contribution is very small at the liquid density
[15,7] and note that in the limiV—o the intramolecular
contribution vanishes. Thus, if we take the average
(o (k—0)) in the stationary shear flow, we can express it
in terms of distortion as

(ylk=0))==(NI2) 2, | dr(xy/r) 8 (1)Ng(r]xo)
»aQ
(33

Since this is equal te- nyV, it follows from Eqgs.(22) and
(26) that

n=(n212) >,

a,aq

| 41002811165 (21 0 (D).
3

with two greek suffices, by specifying their Fourier We note that this expression foris similar to Eq.(15) in
6

transformations. The Fourier transformation d&
FIAI=[dr A, expik-r), is given by

f[Aay] = f[c_a'y]{(f[a'yg'yao]) - k(il)(f[a'yg'yao]) ,}'
(29)

ay?

FIB.,] is given by replacing a,g,,, and c,, in

Eq. (29 by bv“’«/ao and c,,, respectively. F[E,,]
=Fc N FIBIFC,,), FIF oy =FIC oyl F1AL, )/

]f[c_w], and ]-j[Aay]E—i[AM]/k2 and the same relation
holds betweerB andB, E andE, andF andF.

Finally in this section we express the shear viscosiin
terms of the distortiora,(r) or, more preciselya,(r|ao).

Before proceeding to numerical calculations, we remark
that the nonlinear diffusion equationi&8) and (19) govern
the time evolution of the density fields on an atomic scale. If
we introduced slowly varying order parameters such as the
amplitudes of the density waves in liquid-solid interfaces, we
could derive Cahn-Hilliard-like equations for the order pa-
rameters with square gradient terms in the effective free en-
ergy[2,16].

IV. NUMERICAL RESULTS

Model for a diatomic homonuclear liquid

For the purpose we consider the momentum conservation | Sec. 11l we formulated the shear viscosity for a general

equation

dp(k)/dt=ik- a(k), (30
wherep(k)=2,2p; , explik-r; ,), with p; , denoting mo-
mentum of a sitex of the jth molecule. Thexy component
of the stress tensar,, (k) becomes— »yV in the limit of
k— 0. With use of the equation of motion

dpi,a/dt=—_2 > [ria,jﬁgbiig(ria,jﬁ)/ria,jﬁ]
j (#1) B

_;a [MiaipPap(Mia,ip)Tiajpl: (31

it is readily derived that

oyk—0)=—3 > X XicigYia,ip®oh
Lha | (#0),B

one-component molecular liquid. Now we specify our sys-
tem further to be composed of two-sit8=<€ 2) homonuclear
molecules. To be concrete, let us take liquid nitrogen, for
which the interatomic pqtentiabiﬁ(r)=¢e(r) (a,8=1,2
was chosen within the rigid-molecule model to be a Lennard-
Jones potential

@°(r)=4e[(olr)?~(alr)°], (39
with o=3.341A and £e=0.6075<10 % erg [17,11b)]. We

introduce here nonrigidity by choosing a Morse potential for
the intramolecular interaction

¢a(r):Ue[l_exp{_a(r_re)}]za (36)

with U,=1.5865<10 ! erg,a=2.443 A'%, andr,=1.1 A
[18].
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FIG. 1. Equilibrium correlations(r) in units of A~3 for some
temperatures with in units of A forn=0.0186 A3,

From the symmetry inherent in our model system, there
are five unknown quantities for the static correlations intro-
duced in Sec. I, that ig);,=092,=01,=0, C1;= C5,=C1,=C,
w=0, ¢{P=clY, andc?. The generalized HNC equa-
tions (17) and (16) take the form

g=1+h=exd — B¢°+h—c], (37)

FIG. 2. (a) Intramolecular distortioro(r)w(r) in units of A~3
with r in units of A. Forr=1.2 A andr<1 A, we note that
. . b(r)w(r)=0. (b) Stationary distributomQ(r) on thez=0 plane
The ISM OZ relationd5) and (6) are reduced, respectively, in units of A~3 with x andy in units of A. 'Sl'the black rim shows the

to planenQ'=0. We note than Q=0 for r=1.2 A andr<1 A with

r2=x>+y?2.

Inw=2ncxh+c{Y*w— Bp2+C. (398

(0)— _ ~(0) — (0) (0)
Cli="Cpre, e=nlctegrel, (39 the intramolecular distortiom(r)w(r) [see E((qos.(26) and

(23)] and in Fig. 2b) the stationary distributionY(r) on the
h=c+2w*c+w*c*rw+2n[crh+w*cxh]. (40 z=0 plane withy chosen to be rather large in order to make
the distortion discernible. Figurg@ shows that the distor-
Thus the set of equatior(87)—(40) forms the closed equa- tion extends a little asymmetrically around the equilibrium
tions for the five unknowns. intramolecular point,=1.1 A only by 0.2 A. From Fig. &)

The thermodynamic state of liquid,Nve are mainly in- t_he favorable (_)rientation 01_‘ mple_cules is seen to be on 'ghe
terested in is represented By=72.2 K andn=0.0186 A ° Ilne.y= —X. This ten_dengy is S|m_|lar to thg one observed in
[11(b)]. Since our main concemn in this paper is nonequilib-the intermolecular situatiofsee Fig. 8)]. Figures 8a) and
rium effects associated with the shear flow, here we only3() Show the intermolecular distortioa(r)g(r) [see Egs.
summarize equilibrium properties obtained from our coupleo(zz) and(26)] and the stationary distributiom(r)/n on the

) . . . : . =0 plane, respectively. By comparing FigaBwith Fig. 2
HNC equations, discussing them in detail separately in th«%n [6], which depict the same quantity for different systems

future [13]. In Fig. 1 the equilibrium cprrelat{orau(r) IS with different scales we notice that the distortions in both
shown for several temperatures. We immediately observ

; ; ystems look rather similar as a whole. However, for liquid
that w(r) becomes broad due to thermal motion Bsn- N, in contrast with simple liquid§6], we have no positive

creases. Also it tuns out that the average bond length iy around the position corresponding to the second peak
(d)y=Jdr ro(r) becomes large a3 increases due to the o (1), As a result, the second peak of the two-body inter-
asymmetry of the Morse potential around its minimum atmgjlecular correlation is not distorted much by the shear flow
r=re. As for the density dependence @fr) we only note  [Fig. 3(b)] compared to the case of atomic or simple liquids
that(d) decreases asincreases witlT kept constant, which  [6]. We remark that shear stress in the Couette flow is pro-
may be called a packing effect. The intermolecular correladuced by the distortiom(r)a(r) together with the(mainly
tion g(r) is modified only slightly compared to the rigid repulsivg intermolecular interaction Eq34). From our re-
molecular model, maximally arourrd=4 A by 10 % which  sults that the density is higtow) on y=—x (y=x) line
gives rise to a slight change in the internal energy and thender the condition that élue) particle is fixed at the ori-
equation of state. gin, we notice that the blue particle experiences shear force
Asserting these qualitative arguments, we now proceed to the positivex direction as it should in the flow field
distortions produced by the shear flow. We plot in Figg)2 u(r)=yye,.
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thermal velocity. We chose to be i for a soft-core system

in order to get good overall agreement with molecular-
dynamics results at typical liquid densitig&. For liquid N,

let us set the momentum relaxation time tentatively equal to
1T = ar, with 7the intramolecular vibration periog=27/().

The frequency) is estimated based on the model intramo-
lecular potential36) to be (4?U/m)Y?=5x 10" For the
thermodynamic state mentioned above, we calculate pressure
to be p=44x10° Pa from our radial distribution function.
The viscosity for the thermodynamic state is about
340x10® Pa s, which is obtained from our theory by setting

a equal togs; [19]. If packing or other intermolecular effects
tend to maker smaller, the factor becomes larger. For the
rigid model of N,, » is obtained to be only slightly larger
(less than 1%than for the nonrigid model, with the same
being used for the calculation. Finally, we comment that
from our calculations decreases as we decrease density,
with temperature kept constant. In this process pressure de-
creases. From experimerftd] we know thaty decreases as
pressure decreases in accord with our results. From the above
it seems thaty of diatomic liquids can be calculated semi-
quantitatively based on the time-dependent DFT of simple
liquids [6].

g(na(r)

V. REMARKS

In this paper we formulated the shear viscosity of molecu-
lar liquids by extending a time-dependent DFT so that it

FIG. 3. (a) Intermolecular distortiom(r)g(r) with r in units of could be applied to polyatomic liquids. The calculated vis-

A. (b) Stationary distributiom.(r) on thez=0 plane withx andy co§ity, together with equilibrium and nonequilibrium corre-
in units of A. lations, seems to reproduce experimental results rather well.

By allowing for an intramolecular distortion we show quan-

The shear viscosity is calculated from E@4), which fitatively that a molecule itself is distorted just like intermo-

takes the fo”owing form for the homonucle8e= 2 System lecular correlations. It would be interesting if one could ob-
with all the irrelevant subscripts omitted: serve such distortion experimentally. Our final remark is

concerned with the free-energy functional Ed), which is
nn ) o proposed based on the assumption that an &site fixed at
7=(2n )j dr(xy)g(r)¢® (r)a(r)/Dr, (4D some position interacts with other sites via a bare intersite
potential, while the other sites interact each other via an ef-
To calculate the shear viscosity based on @d) we must fective interactiorc or ¢(?). Although this is consistent with
estimate the bare diffusion constdht&=kgT/ml’, where 1I'  the so-called extended RISM functional idea, we need some
denotes the relaxation time of each at(site) in momentum theoretical justification for this proposal. We plan to discuss
space. For monatomic liquids, I1/was estimated to be this point together with an application of E¢f) to some
1T = allvy,, wherel is the interparticle distance ang, the  isomerization problems in the future.

[1] For reviews, see A. D. J. Haymet, Annu. Rev. Phys. CHan. [5] T. Munakata, J. Phys. Soc. J58, 2434(1989; T. Munakata,

89 (1987; D. W. Oxtoby, inLiquid, Freezing, and the Glass Phys. Rev. B50, 2347 (1994).

Transition edited by J. P. Hansen, D. Levesque, and J. Zinn- [6] J. Araki and T. Munakata, Phys. Rev.52, 2577(1995. For

Justin(Elsevier, New York, 1990 Y. Singh, Phys. Rep207, application of a linear dynamic DFT to dynamic structure fac-

351(1991. tors of liquids and solvation dynamics, see F. Hirata, T. Mu-
[2] A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phyd, 2559 nakata, F. Raineri, and H. L. Friedman, J. Mol. L&5/66 15

(1981); D. W. Oxtoby and A. D. J. Haymeibid. 76, 6262 (1995.

(1982. [7]W. T. Ashurst and W. G. Hoover, Phys. Rev. #, 658
[3] P. Harrowell and D. W. Oxtoby, J. Chem. Phy&0, 1639 (1975

(1984. '

[8] (a) D. Chandler, J. D. McCoy, and S. J. Singer, J. Chem. Phys.
85, 5971(1986); (b) 85, 5977(1986.
[9] D. Chandler, inStudies in Statistical Mechanicsedited by E.

[4] Y. Singh, J. P. Stoesse, and P. G. Wolynes, Phys. Rev. Lett.
54, 1059(1989; P. G. Wolynes, J. Non. Cryst. Solid$, 443
(1979.



54 SHEAR-INDUCED DISTORTION OF INTRAMOLECULAR AND . .. 1769

W. Montroll and J. L. LebowitzZNorth-Holland, Amsterdam, [15] J. P. Hansen and |. R. McDonald@heory of Simple Liquids

1982, Vol. 8, p. 275. (Academic, New York, 1986
[10] J. K. Percus, irClassical Fluids edited by H. L. Frisch and J. [16] T. Munakata, J. Non-Cryst. Solidsl7/118 875(1990; Aust.
L. Lebowitz (Wiley, New York, 1964. J. Phys49 (1996.

[11] (a) F. Hirata and P. Rossky, Chem. Phys. L88&, 329(1981); [17] J. Barojas, D. Levesque, and B. Quentrec, Phys. ReVv, A
(b) F. Hirata, B. Montgomery, and P. Rossky, J. Chem. Phys. 1092(1973.

77, 509 (1982. [18] K. P. Huber and G. Herzber§yjolecular Spectra and Molecu-
[12] H. L. Friedman,A Course in Statistical Mechanid®rentice- lar Structure (IV): Constants of Diatomic Moleculé¥an
Hall, Englewood Cliffs, NJ, 1985 Nostrand Reinhold, New York, 1979
[13] T. Munakata, S. Yoshida, and F. Hiratanpublishegl [19] Kagakubinran (Handbook of Chemistryjth ed., edited by the

[14] R. Eisensitz, Proc. Phys. Soc. London Sec62\ 41 (1948. Chemical Society of JapaiMaruzen, Tokyo, 1993



